THE USE AND MISUSE OF INTERNATIONAL DATA IN HIGHER EDUCATION

Arthur M. Hauptman
A. Lee Fritschler

CHEA Annual Conference
26 January 2009
Comparing U.S. higher education to systems in other countries has become common in recent years.

- This development is positive in that we can learn much from looking at the experience of other countries.
- But international comparisons also can lead to incorrect conclusions if they are not done properly.
One Concern with International Comparisons: Cultural, Demographic and Economic Differences Among Countries May Skew Results

- **Cultural** – Countries vary sharply in their attendance expectations
 - A number of countries don’t expect students to attend

- **Demographic** – Declining demographics in some countries can have large effects on statistics
 - Some European countries have declining numbers of college age students which raise many of their rates

- **Economic** – Differences in societal development will have large impact on various rates
 - Less developed and more agrarian countries have different labor force needs than more industrialized ones
Examples of how international data on higher education have been misused

- Selective use of data
- Selective use of international comparisons
- Incorrect data analysis
- Confusion of terms
- Inappropriate Indicators
I. Selective Use of Data: Looking at Top High School Science Performers

Much has been made of how poorly U.S. high school students perform in math and science when compared to other OECD countries (PISA).

The following charts show two sides of the same issue using the same data:

- View 1 shows the percentage of 15 year olds in each country that are top performers in science.
- View 2 shows the share of all top performing 15 year olds in science who are American.
View 1: Share of Top High School Science Performers in Each OECD Country
View 2: U.S. Share of Top High School Science Performers

Percentage of top performers across all PISA countries and economies

- United States 25%
- Japan 13%
- Germany 8%
- United Kingdom 8%
- France 5%
- Korea 5%
- Russian Federation 6%
- Canada 4%
- China 3%
- Netherlands 9%
- Poland 3%
- Chinese Taipei 3%
- Italy 2%
- Belgium 1%
- Finland 1%
- Hong Kong China 1%
- Sweden 1%
- New Zealand 1%
- Switzerland 1%
- Austria 1%

Note: “Others” includes countries that account for 0.5% or less: Hungary, Turkey, Ireland, Israel, Chile, Slovak Republic, Denmark, Norway, Mexico, Greece, Portugal, Greece, Thailand, Lithuania, Argentina, Estonia, Bulgaria, Peru, India, Romania, Colombia, Indonesia, Serbia, Jordan, Uruguay, Macao-China, Iceland, Luxembourg, Tunisia, Liechtenstein, Qatar, Azerbaijan, Kyrgyzstan, Montenegro.

Source: OECD PISA 2006 Database.
II. Selective Use of International Comparisons: U.S. Cost and Attainment

Many recent reports in the U.S. have focused on how the U.S. spends the most on tertiary education among OECD countries but gets less in terms of attainment than many countries.

- Are these assertions true?

The answer depends very much on which international rankings are being examined.

Following chart on where the U.S. stands on cost, commitment, and attainment shows how the U.S. ranks higher in some categories and lower in others.
Where the United States Ranks on Cost, Commitment, and Attainment among OECD Countries

<table>
<thead>
<tr>
<th></th>
<th>Education</th>
<th>Research</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Education Spending per Student, 2005</td>
<td>1st</td>
<td>15th</td>
<td>1st</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMITMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Education Resources as a Percentage of GDP, 2005</td>
<td>15th</td>
<td>1st</td>
<td>1st</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEGREE ATTAINMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attainment Rates, Workers Aged 25-64, 2006*</td>
<td>2nd</td>
<td>9th</td>
<td>3rd</td>
</tr>
<tr>
<td>Attainment Rates, Workers Aged 25-34, 2006*</td>
<td>6th</td>
<td>11th</td>
<td>10th</td>
</tr>
<tr>
<td>Attainment Rates, Workers Aged 55-64, 2006*</td>
<td>1st</td>
<td>5th</td>
<td>1st</td>
</tr>
<tr>
<td>Difference in Attainment Rates Between Workers Aged 25-34 and 55-64, 2006*</td>
<td>30th</td>
<td>18th</td>
<td>29th</td>
</tr>
</tbody>
</table>

III. Incorrect Data Analysis: Attainment in U.S. has been flat for forty years

- One of the recent assertions has been that attainment rates in the U.S. have been flat for forty years.
- This analysis is incorrect as the following three charts show.
- Problem arises from analysis based on lack of difference in rates between the youngest and oldest group of workers.
U.S. ATTAINMENT RATES, BACHELOR’S DEGREE OR MORE, 1940 TO 2005

[Bar chart showing the attainment rates for bachelor’s degree or more from 1940 to 2005.]

- 25 and Older
- 25 - 29 Years of Age

Source: U.S. Bureau of Census
AVERAGE ANNUAL RATES OF GROWTH IN DEGREES, FTE ENROLLMENTS AND POPULATION, 1970 - 2005

Diagram showing average annual rates of growth for various education levels and types of enrollments, as well as population growth from 1970 to 2005.
ADULT POPULATION WITH AT LEAST SOME COLLEGE, BY AGE GROUP, 1965 TO 2008

Four Years of College or More

One to Three Years of College

- 25 or over
- 25-34
- 35-54
- 55 or over
IV. Confusion of terms: The Use of Completion and Attainment Rates

Degree completion and attainment rates are very different measures of student success:
- attainment is share of population with a degree
- degree completion measures graduates as a percentage of those who began

But it is not uncommon for people to confuse the terms - to start a paragraph by saying that US attainment rates have slipped from first rank (they have) and finish by saying that we must regain our leadership in degree completion rates (which we never had)
V. Inappropriate Indicators: Graduation Rates and Research Spending per Student

- For many issues, countries do not collect data consistently - OECD and others must then develop proxies that are intended to reflect reality.
- Two examples of OECD indicators which are not accurate reflections of reality:
 - OECD graduation rates divide the number of graduates in one year by the population at the typical age of graduation for that program
 - More of a bad attainment rate than a completion rate
 - OECD measures university-based research effort by dividing research spending by number of FTE students
 - Measuring national research effort on a per student basis makes little sense.
Some Conclusions

International comparisons should be made carefully because they may not accurately reflect cultural, demographic and economic differences.

- We should shy away from using international comparisons as a basis for ranking countries.

Accurate analysis of international data is necessary for good policymaking.

- Skewed data leads to skewed solutions.

The best use of international comparisons may be to learn from the experience and policies of other countries rather than dwell on numbers and statistics.

- These concerns lead us to be more skeptical about international comparisons that would require greater sophistication such as measuring learning outcomes.